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SUMMARY

The paper presents a procedure to estimate the matrix of intraclass correlation co-
efficients from the Bayesian point of view. Multivariate measures of intraclass corre-
lations are introduced to assess the degree of resemblance between family members
with respect to more than one characteristic. Unified estimators for the multivariate
measures are proposed as the posterior means of the multivariate inverted beta distri-
bution. The proposed method is illustrated with the one-way model. An illustrative
example is included.
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1. Introduction

In this paper we develop a Bayesian procedure for problems in the multivariate ana-
lysis of variance (MANOVA). We study the one-way classification, and we adopt a
random-effect model (the extension to multiway layouts is straightforward). We de-
velop posterior analysis for the intraclass correlation coefficients. A related problem
for the univariate case was discussed in Box and Tiao (1973), Palmer and Broemeling
(1990), Jelenkowska (1996) and Srivastawa (1993). The last paper concerns the esti-
mation of intraclass correlation coefficients, but not from the Bayesian point of view.
Recent theory and classical methodology for inference concerning the intraclass corre-
lation coefficient in the one-way model was reviewed by Donner (1986). Non-Bayesian
multivariate measures of the intraclass correlation in the one-way model were intro-
duced by Konishi et al. (1991). Unified estimators for the multivariate measures were
proposed as the eigenvalues of certain random matrices constructed by the matrices
of the weighted sums of squares and products of observations.
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In this paper, the main point in the posterior analysis is the approximate posterior
distribution of the covariance matrices associated with the random effects obtained by
Jelenkowska (1995). Section 2 describes the one-way model, the likelihood function
and the prior density function for the unknown parameters. In section 3 we obtain
the marginal posterior density for the function of the intraclass correlation coefficients
(called generalized heritability in genetics, see Narain, 1990). The mean of this po-
sterior density, which is a multivariate inverted beta distribution, will be used as its
estimator. Bayesian estimator for the matrix of the intraclass correlation coefficients
will be derived in Section 4. In Section 5, we provide an application of our approach
to a data set.

2. Model and assumptions

Adopt the model
Vij=p+bitey i=1,..m, j=1,..,n; (2.1)

where y;; denotes a p-vector of observations representing the j-th replication in the
i-th population, g denotes the grand mean, b; denotes the random effect due to
population ¢ ans e;; denotes a disturbance term. This model can be written in the
matrix form as

Y = X0+ UB +E, (2.2)

where Y' = (¥11, -1 ¥1n,} -+ Ymnys ) Ymn,, ) denotes the p xn matrix of observations,
X =Jn, a (n x 1) vector of ones, with n =" n;, 8’ = p, U =diag(Jp,, ..., In,.),
B’ = (by,..,by) and E' = (e11,..,€1n,; - €mnys -, €mn,,)- The random effects
(b1,...,b,,) represent effects associated with the random input factor. Since one’s
interest is often focused on the variances of the random effects, the mixed linear mo-
del is often called a variance components model. If n; = ng = ... = n,,, then the design
is said to be a balanced design. Otherwise, the design is unbalanced. Further, it will
be assumed that b;, i = 1,2,...,m, have a Normal distribution with mean zero and
covariance matrix ¥, and it will be assumed that e;;,% =1,2,...,n,j = 1,2,...,n;, all
have a Normal distribution with mean zero and covariance matrix 3¢. The population
mean, 6, is treated as a nuisance parameter and its estimates will not be reported.
So, the basic assumptions are

a) €e;; ~ N(O,Eo),

b) b; ~ N(0,%,),

c) the e;; and b; are independent,

d) the matrix of the intraclass correlation coefficients is H;= X 71%;, where
Y =3+ 3.
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The likelihood function is then given by
p(Y | 6,B,%;) « | S| exp {—%tr [(Y——XB—UB)’(Y—XB—UB)ESI]} (2.3)

Note that the likelihood function (2.3) is not the usual one which is employed with
non-Bayesian as well as Bayesian studies. In the Bayesian approach B is regarded as
a random parameter, but since random parameters are not permitted in the sampling
approach, the likelihood (2.3) is averaged over the distribution of B.

A Jeffrey’s prior pdf will be used for 8, B and X¢. The Jeffrey’s prior is chosen
so that the data may speak for themselves as described in Box and Tiao (1973). The
prior knowledge about (0, B, X;) is expressed by

p(8,B, ;) « |So| 3D (2.4)

It should be noted that while the covariance matrix 3; associated with the random
effects b;, i = 1,...,m, is unknown, it is not explicitly included in the prior as a
parameter. The prior in (2.4) appears to be the same as would be the case for a
regression model that contains only fixed effects. However, B is viewed as resulting
from a random selection process.

3. Posterior distributions

Our interest will be focused on estimation of
H, = 2—120, H, = 2-121, where ¥ = Xy + X;. (31)

The largest eigenvalue of H, is called the generalized heritability.

The mean of the posterior distribution of Hj is to be found as the "natural”
Bayesian estimator if a quadratic loss function is appropriate. For our problem we will
use the approximate posterior density function for the covariance matrices (X0, %)
of the form (see Jelenkowska, 1995)

P(Z0, 21| Y) o p(Bo | Y)-p(Z1]Y),
where
P(S0 | Y) e alH Y e {_Srsmg ),
S=YRY-B'URUB, R=1,- 13,7, (3.2)
n

B = (URU)"U'RY,
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and
_1 1
p(E1 | Y) o || 7Em) exP{—itr(Slzl‘l)}, (3.3)
where
—p—2[a,~ S
S1=ZZlL [BIB-F—-—-—-————] , m>p+2, n>m-+p-+1.
m n—-—m-p—1

The functions (3.2) and (3.3) are the density functions of inverted Wishart distribu-
tion.
Thus the approximate joint posterior distribution of (Xg, X4) is

miptl

_n—m+ptil _ 1
p(Zo, T | Y) ox [Bo| 5= |3~ =4 exp{—itr(8251+s121_1)}. (34)

From (3.1) we have
Sl=H'®"! and Zjl=(I-H;) 'zl
The jacobian is
J(Z0, Ty — X, H,)) = [ZFEeD),
The joint posterior distribution of (X, H)) is
p(SH | Y) o I— Hll—%(n—m+p+1) |H1|—§(m+p+1) |E|—%(n+p+1) _ (3.5)

Integrating (3.5) with respect to X, we get the marginal posterior density of (H; | Y)
as

p(H; | Y) o |S|7% lsl—lslé(m—p—l) ) Aany |S;H (1 - HI)S—II%(m—P—l) . (36)

Let
W,=S;H!(I-H,)S™!
be a transformation from H; to W; with jacobian
J(H, - Wy) = [s7Is[” [HT
This yields the marginal posterior distribution of Wy
p(W1 | Y) o [Wy P D 1wy 7 (3.7)

This proves the following.

THEOREM 1. The approximate posterior distribution of Wy is the multivariate in-
verted beta distribution given by (3.7).
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4. Bayesian Estimators for (H,, H,)

The posterior mean for W; can now be written as follows:
E(W,;|Y)=S,E(H;'H, | Y)S™L.

From the inverted multivariate beta distribution, we have

m—-p+1
=———L,. 4.1
B(W, |Y) =21, (1)
Note that
H'Hy = X%, =R!
and recall that
H =%(Z0+3%) =R+
Then,
5 — ~1 m—p+1__
R{'=EH] H) = 5518,
and, finally, the estimators for Hy, H; are given by
I:IO = R_l, PI] = Rlﬁ_l, (42)
where
Ri=2"""2515 and R=I+R,
m—p+1

The result is summarized in

THEOREM 2. The bayesian estimators of Hy and Hy are given approzimately in (4.2).

5. Numerical example

The model used to generate the data is a one-way layout (2.1) consisting of one
random effect (parental lines). The dependent variables are ear length, grain weight
per ear and 1000-grain weight (p = 3). We also have n; = ny = ... = n; = 3,
n =21 and m = 7. The covariance matrix among parental lines is denoted by ¥; and
the covariance matrix for the experimental errors is 3. The data were taken from
Kaczmarek and Krajewski (1994), page 315.
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Using the posterior mean as a point estimate of the correlation matrix, we obta-
ined
0.2855 0.0225  1.0547
H,; = | -0.2253 0.1027 -5.3095
0.0692 0.0081  0.6656

The eigenvalues \; of H; denote in genetics the heritabilities of the characters and
will be used as multivariate measures of the intraclass correlations. They are

A1 =0.7238, A2 =0.1102, A3 =0.2198.

Another possible approach to the estimation problem is to use the eigenvalues
iy i=1,2,3, of 3,(p + $1)"! (£ and ¥ are maximum likelihood estimators for
3o and ;) as multivariate measures of the intraclass correlation (see Konishi et al.,

1991).
Then,
L . 0.1745 -0.1377 0.0421
21(Zo+3)" = 00137 0.0627 0.0049
0.6445 —3.2447 0.4067
and

A1 = 04423, Ay =0.0673, A3 =0.1343.

6. Discussion

Extensive simulation studies are needed to compare the estimation method introduced
in Section 4 with the method of Konishi et al. (1991) in terms of the mean square
error, to answer the question: which one is closer to the true value?

In the univariate situation Palmer and Broemeling (1990) proposed the median
of a conditional posterior density as a Bayes estimator of the intraclass correlation
coefficient. Using the simulation study, they showed that the Bayes estimator has a
smaller mean square error then the maximum likelihood estimator. The estimators
proposed in Section 4 may be considered as the multivariate generalization of these
univariate estimators.

The main aim of this paper was to describe a method of estimation of the degree
of resemblance between family members with respect to more than one characteristic
from a Bayesian point of view. In the fields of research such as genetics, biology,
etc. we frequently have a sample of families and then take measurements of several
characteristics, e.g. physical or chemical variables. Qur unified estimators are based
on the posterior mean.
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Estymacja bayesowska wewnatrzklasowych wspélczynnikéw korelacji w
wielowymiarowym modelu klasyfikacji pojedynczej

STRESZCZENIE

W pracy zostala przedstawiona estymacja macierzy wewnatrzklasowych wspolczynni-
kéw korelacji z bayesowskiego punktu widzenia. W celu oszacowania stopnia podobie-
fistwa pomigdzy czlonkami rodziny z uwzglednieniem wigcej niz jednej cechy zostala
wprowadzona wielowymiarowa miara wsp6lczynnikéw korelacji. Jako ujednolicony
estymator tej miary zostala zaproponowana $rednia rozkladu a posteriori odwrotnego
wielowymiarowego rozkladu beta. Zaproponowana metoda zostala przedstawiona na
przykladzie modelu klasyfikacji pojedynczej. Rozwazania teoretyczne zostaly zilu-
strowane na przykladzie liczbowym.

SLOWA KLUCZOWE: estymacja Bayesowska, model MANOVA, model klasyfikacji po-
Jjedynczej, odwrotny wielowymiarowy rozklad beta, wspélczynniki korelacji.



